skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hauenstein, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Newton's method is a classical iterative approach for computing solutions to nonlinear equations. To overcome some of its drawbacks, one often considers a continuous adjoint form of Newton's method. This paper investigates the geometric structure of the trajectories produced by the continuous adjoint Newton's method for bivariate quadratics, a system of two quadratic polynomials in two variables, via eigenanalysis at its equilibrium points. The main ideas are illustrated using plots generated by a Maple program. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Ramification points arise from singularities along solution paths of a homotopy. This paper considers ramification points of homotopies, elucidating the total number of ramification points and providing general theory regarding the properties of the set of ramification points over the same branch point. The general approach utilized in this paper is to view homotopies as lines in the parameter spaces of families of polynomial systems on a projective manifold. With this approach, the number of singularities of systems parameterized by pencils is computed under broad conditions. General conditions are given for when the singularities of the systems parameterized by a line in a space of polynomial systems have multiplicity two. General conditions are also given for there to be at most one singularity in the solution set of any system parameterized by such a line. Several examples are included to demonstrate the theoretical results. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  4. Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P (Ed.)
    An algorithm is presented for computing the tension in an elastic cable subject to sagging under its own weight, a problem highly relevant in tethered systems such as cable-driven parallel robots. This requires solving the two coupled equations of the Irvine cable model, which give the endpoint position as a function of vertical and horizontal components of tension. Via a change of variables, we reformulate this system as a pair of uncoupled equations, which are shown to have a unique solution. We develop an efficient numerical procedure to solve one of these, after which closed-form formulas provide the solution of the second equation and ultimately the tension components. 
    more » « less
  5. Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P (Ed.)
  6. Designing and analyzing large cable-driven parallel robots (CDPRs) for precision tasks can be challenging, as the position kinematics are governed by kineto-statics and cable sag equations. Our aim is to find all equilibria for a given set of unstrained cable lengths using numerical continuation techniques. The Irvine sagging cable model contains both non-algebraic and multi-valued functions. The former removes the guarantee of finiteness on the number of isolated solutions, making homotopy start system construction less clear. The latter introduces branch cuts, which could lead to failures during path tracking. We reformulate the Irvine model to eliminate multi-valued functions and propose a heuristic numerical continuation method based on monodromy, removing the reliance on a start system. We demonstrate this method on an eight-cable spatial CDPR, resulting in a well-constrained non-algebraic system with 31 equations. The method is applied to four examples from literature that were previously solved in bounded regions. Our method computes the previously reported solutions along with new solutions outside those bounds much faster, showing that this numerical method enhances existing approaches for comprehensively analyzing CDPR kineto-statics. 
    more » « less